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Outline

« 2D Fourier Transform

« 2D Discrete Fourier Transform

* Hough Transform

 From Hough to Radon transform
« Lambert-Beer principle

« Computed Tomography

» Filtered Back Projection

 ART and SART methods

« Multispectral acquisitions

« Phase-contrast Tomography
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Fourier series reminder

Example

wmw’ \//\ SAAAA

1
f(x) = sinx + §sin3x+. .
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Fourier series: just a change of basis
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Inverse FT: Just a change of basis
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The 2D Fourier Transform

The analysis and synthesis formulas for the 2D
continuous Fourier transform are as follows:

Analysis

Fluv)= [ [ fleyje 2z dy

Synthesis

f(x,y)zf f F(u,v)e/2™ ™) gy dy
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Separability of 2D Fourier Transform

The 2D analysis formula can be written as a 1D analysis in
the x direction followed by a 7D analysis in the y direction:

F(u,) =/ / Flx.y)e T2 | ¢ Iy

— 00

The 2D synthesis formula can be written as a 1D synthesis
in the x direction followed by a 1D synthesis in y direction:

f(x,y):f / F(u,v)e/ ™ du| e/ dv

—COo
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The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (for sampled signals) can be
written as: N—-1

X[k] = Z x[n]e /T NIkn.

n=0

With this notation the DFT Analysis and Synthesis pair becomes:

N-1
X[k]= ) x[n]Wy"

n=0

1 N-—1
x[n) = > X[k,
k=0
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Numerical examples

The DFT for N samples can be obtained as the multiplication of
the N samples by the W matrix

. kn
W - WN k,n=0,...,.N-1
11 1 1 1
1w, Wy W, Wy
- 1 w: W wo 2V
row ws W 3V
N N N N

_1 W]\]]\/—l W]\?(N—l) WA3](N—1) o W]\([N—l)(N—l) )
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DFT examples

1 1
N=2 =
1 -1
1 1 1 1]
= 1 —j -1
N=4 wo|l J
1 -1 1 -1
oy -1 —=j]
N=8 LA A A z :
WVSO VI/Sl W'82 VI/83 VI/87 W _]?72-
W_ W;) VV82 W;‘ VI/86 W;4 8 _e -
wow owt oWy w2 1 Jj
8 8 8 8 8 — _
WO W7 VV.14 W21 W49 \/5 \/5
778 8 8 8 8 |
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DFT for N=8

The DFT for N samples seen as the projection on N
complex exponential sequences

X0l

X[0

X[1 x[1]
X[2 x[2]
X[3] < (3]
o] = [ |
X[5 AN N TN x(5]
03 I | RIS SR R O
X7 ; EQ
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Example

Consider a periodic signal whose period is [0 1 2 3]
If we want to get the DFT of the input signal we can write:

1 1 1 1 (|0 6

1 —7 -1 1 —24+27
Y J J _ J

1 -1 1 -1]2 -2

_1 j -1 —j _3_ _—2—2j_
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Inverse DFT

The inverse of the W matrix will be equal to its conjugate
transpose divided by N, for example for N=4

1 1 1 1

W_1 :l 1 ] —1 _j

411 -1 1 -1

L-j -1

The iDFT for the previous example will then be:

11 1 1] 6 | [0]
L - =g 22 |
Wi a1 gl 2 |72
b= =1 j=2=-2j] [3]
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Sinusoidal waves

The 2D Fourier Transform is based on a decomposition into
complex functions:

e/2m(ux+vy) = cos2m(ux + vy) + jsin2rw(ux + vy)

The real and imaginary terms are sinusoids on the x,y plane.
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Sinusoidal waves

o—im(uztvy)

. u

[ ]
oim (uz+vy)
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Fourier Transform Pair example

F(u,v) = [ [ f(z,y)e "= Ddgdy,
_ X2 _ 327ru:c Y/eg _ j2mvy
f f Y/2 ¢ a4y,

[e—j21ru:c] X/2 [e—jzmy] Y/2

—j2muf _y, [—J2mv _Y/2’

_ j; - [e—qu _ equ] j; - [e-ij _ eij] ’
—727 —J27

. !sz’n('eru)] [sz’n(Z'JrY'v)]

mXu Y v
= XYsinc(nXu)sine(rYv).
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The 2D Discrete Fourier Transform for periodic signals

The analysis and synthesis formulas for the 2D
discrete Fourier transform are as follows:

Analysis
M—1N-1 I
Fk,t) = z ZF (m,n) —j2n(kM+€ )
m 0 n=0
Synthesis VN1
F(m,n) 2 ZF k,0)e 72 (kg% )
k 0 (=0
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Separability of 2D Discrete Fourier Transform

(k) =
N—1]| M—1 1
S LS ] s

The 2D forward DFT (for a squared input matrix of size
SxS) can be written in matrix notation:

F=(WF)W
Where rand c are row 1 Y sk
and column indexes W =——e¢ \)

starting from zero. re / S
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Separability of 2D Discrete Fourier Transform

F(m,n) =
M—1

1 5 jZEkm 72y
R Z | & 0 () | o r2n(ch),

The 2D inverse DFT can be written in matrix notation:

F=(WF)W

And

1 N—1

Where the matrix e
elements are | 12”2

Marco Marcon - Tomography POLITECNICO MILANO 1863



-




2D DFT Example
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low-pass (blurred) version of an image
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Hi-Pass Filter

a high-pass filtered version of Albert, and the amplitude spectrum of
the filter. This impulse response is defined by d(n)-h(n,m) where

h(n,m) is the separable blurring kernel used in the previous figure
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Band Pass Filter

a band-pass filtered version of Albert, and the amplitude spectrum of
the filter.

This impulse response is defined by the difference of two low-pass
filters.
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Directional filters
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Hough Transform

Goal: recognize lines in images
Approach:

— For every point in the starting image plot the sinusoid
on the dual plane (parameter space): (p,9)

p=Xx*cos(d)+y”sin(d)
where x and y are fixed (the considered point

coordinates) while p and ¥ are variables.

—  The Hough Transform of an image with K lines is the sum of
many sinusoids intersecting in K points.

— Maxima in the dual plane indicate the parameters of the k lines
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Hough: implementation

Consider a discretization of the dual plane for the parameters
(p,9): it becomes a matrix whose raw and column indices
correspond to the quantized values of p and 3.

The limits of p are chosen accordingly to the image size.
Usually: -prax £ P S Prax -T2 £ 0 < T1/2
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Hough: implementazion

Clear the matrix H(m,n);

Fro every point P(x,y) of the image
— 1. for 9, that ranges from -11/2 to 11/2 with step dJ
1. Evaluate p(n)=x*cos(d,)+y*sin(J,)
2. find the index m corresponding to p(n)

* 3. Increase H(m,n)
— 2. end

end

4. Find local maxima in H(.,.) that will corresponds to
parameters of the founded lines
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Hough Trasform

5 points

“~ -
—

N - ~
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Hough Trasform

line p>0,0>0
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Hough Trasform

line p>0,0<0
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Hough Trasform

line p<0,6>0
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Hough Trasform

Dotted line

AT BRNN
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Hough Trasform

Same text with different orientations

TESTO

OLSdL
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Hough Trasform

Noisy and noiseless »e :
square

Marco Marcon - Tomography
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Hough Trasform

Accumulation matrices of the previous images

5. ¢ & B =B ¥ #
, TSy NS Rty YRRy

8. & &8 &8 B B ®
[ T 1 1 2= °p
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Examples

Original image

20
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100
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Il |,|'
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Courtesy. P. Salembier
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Example

Original IC image (256x256)

-150 1100
190
-100 @
480
50 =470

60
50
40
30
20
10

0 20 40 60 80 100 120 140 160
8 (degrees)
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Radon and Hough transforms

The Hough transform and the Radon transform are indeed very
similar to each other and their relation can be loosely defined as
the former being a discretized form of the latter.

The Radon transform is a mathematical integral transform,
defined on for continuous functions.

The Hough transform, on the other hand, is inherently a discrete
algorithm that detects lines (extendable to other shapes) in an
image by polling and binning (or voting).
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The Beer-Lambert Law

The Beer-Lambert law connects the initial (known) and final
(measured) intensities of an X-ray:

I(s)=1 exp[ [, (s dsj—)jﬂa =—1og(§0]

(dl 7
ds Ha Ha = Ha ( ) -
) I(S = O) = ]0 source (no absorption)

I(s=L)=1, detector

tissue

We only possess line integrals
of the quantity of interest

1,
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Beer-Lambert law and Radon transform

projection p, (7)

D, (t):jf(x,y)dS:

)

oo o0

= [ [ £ ()8 (xcos(6)+ ysin(0)~r)dxdy
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Hounsfield units

The energy of the X-ray is attenuated from the tissue that it
Crosses.

The denser the tissue region, the higher the attenuation.

We are interested in a parameter called absorption
(=attenuation) coefficient 4, .

The result is expressed in relative Hounsfield units:

material HU
water 0
air -1000
bone 1086
blood 53
muscle 41
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CT scan [1972 Cormack, Hounsfield - Nobel Prize 1979]

Dr.Allan Cormack
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tandard Postage
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The sinogram

For every angle we obtain a projection, a collection of projections
Is called sonogram.

Object/
Phantom

f(x.y)
ezu Sinogram
projection: Py_q(t l
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‘Computational’ version

« Sinogram (measured data): already discrete (finite set of
angles, finite set of detectors)

« Sample: discretize in voxels

« Various approaches to discretize (compute or approximate) the

line integrals
Radon transform 5(‘7: COS(H) + ySln(e) o t) f(ﬂ;, y) dmdy = y(91 t)

Original (Sinogram) R2 ~ ~ 4

160
K(z,y;0,t) i

Kf =y

140

w 120

100

®
(=}

Projection position (pixels
(=
(=]

3

»
-

50 100 150
Projection angle (deg)

N
o

o

0 25 50 75 100 125 150
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History of clinical CT scanners

X-ray source

Hounsfield’s first generation
CT scanner showing the
translation-rotation system.

i

’

JH

L

X-ray detector
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History of clinical CT scanners

The second generation CT
scanner, showing the F
improved translation- . |
rotation system. L X

X-ray detector
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History of clinical CT scanners

X-ray source

an

\J

The third generation of CT
scanner, the first fan-beam
type scanner.

X-ray detector array
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History of clinical CT scanners

A fourth generation CT
scanner, showing the full
ring of detector elements.

X-ray detector ring
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History of clinical CT scanners

The fifth generatonctT s
scanner. The source and
detector rings both sweep
through angles of 210° and
are arranged to be non-
coplanar, so as to allow for
the overlap

Y

X-ray detector nng
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Mapping and reconstruction

Marco Marcon - Tomography POLITECNICO MILANO 1863



Image reconstruction

There are several techniques for performing image reconstruction, which can be
classified into:

* Analytical,
« Algebraic,
« Statistical.

Analytical techniques model the object as a mathematical function, thus, reconstruct
the object by solving a continuous integral equation.
* Analytical techniques are divided into:
« exact algorithms
* non-exact algorithms
« depending on whether or not the solution of the integral equation is exact.

« Algebraic Reconstruction Techniques (ARTs) make use of iterative reconstruction
approaches in which several iterations are performed until certain criteria are
met.

« Statistical reconstruction algorithms are also iterative methods, but in this case
the unknowns are assigned by means of likelihood principles.
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Fourier Slice Theorem

The object, which in this case for simplicity is represented as a
circle in the 2D view, is described by the function f(x,y).

Coordinate system used for the tomographic reconstruction in
parallel-beam geometry: v
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Fourier Slice Theorem

The object, which in this case for simplicity is represented as a
circle in the 2D view, is described by the function f(x,y).
Coordinate system used for the tomographic reconstruction in

parallel-beam geometry:

»| 1D Fourier transform

2D Fourier transform

F(u,v)=F(wcosd,wsinb)
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Fourier Slice Theorem

If Pg(w) =F{pe(t)} isthe 1D Fourier transform in the & direction (@ represents
frequencies along that direction), then it also corresponds to the values of the
2D Fourier transform along the straight line: usin@—-vcosf =0

and, in particular, ® =ucos @+ vsin &

» Fourier slice theorem provides a straightforward procedure for tomographic
reconstruction, but,in the practical implementation, after applying the 1D
Fourier transform to each projection, the Fourier space is filled on a polar
coordinate grid.

» The fast Fourier transform (FFT), however,requires data on a Cartesian grid.

* For performing the 2D inverse Radon transform by means of a FFT algorithm,
a regridding process is required in which projection data are rearranged from
a polar to a Cartesian grid through interpolation.

 Interpolation in the frequency domain is not as straightforward as in the
spatial domain, and is difficult to implement.
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Filtered Backprojection

The FBP algorithm, is the most widely used reconstruction method,
directly derived from the Fourier Slice Theorem.

Each projection describes the distribution of the attenuation coefficient
for the given X-ray path.

I p3 p3

pl pl
According to the simple backprojection principle, every profile is
backprojected along the viewing direction (i.e. the #angle) from which it
was acquired.
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Backprojection blurring

Due to the fact that each projection is a non-negative function,
positive values are also assigned to voxels that do not contain the
object. This leads to a blurred image that is not of sufficient

quality.

The figure represents the result of the simple backprojection of a
point object.

The superimposed profiles produce a central spike with a broad
skirt that falls off as 1/r.
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Implementation of the Filtered Back Propagation

FBP involves convolving each object projection with

a filtering function (directly obtained from the polar coordinates), before
calculating the inverse Fourier transform to recover the object.

v 4

The 2D inverse Fourier Transform is;: y

f(xp)= | [ F(uv)e™  dudy 9

—00 —00 >
u

Since

u=wcosf, v=wsinf, o=u’+v’, O=tan" (v/u) p
The differentials can be changed in: dudv = wd wd 6

2
xy Zj
0
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Implementation of the Filtered Back Propagation

F j27rm(xcos€+ysint9)a)da)d0 /a')

2
xy :I
0

The formula is equivalent to:

S =3

v

:” OOF Jj27e(xcosO+ysin )
f(x,y) _(‘; j (w,0)e w|dew |d6 p

—Q0

So, we can limit the values of F(w,0) to the acquired values Ps(w) = F{py ()}

o0

f(x’y):]z J‘}?g( )‘0)‘ Jj2rw xcos(9+ysm0)da) do
0

—00
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Implementation of the Filtered Back Propagation

o0

f(x,y)z]i jl)é;( )‘0)‘ ]27ra)xcos6?+ysm¢9)da) do
0

—Qo0

The formula is equivalent to:

o0

f(x,y)=j j}'{pe( )}|a)| jazo(xeosteysing) g oy | 46
0

—0o0

That, in a discrete formulation (finite number I of views ¢,) becomes:

:%é?%?@“%@”
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Continuous and discrete reconstruction with FBP
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Algebraic reconstruction technique

final images

H

measured projections
6 yes
comparison | @ ® | end point ?
3 :
Iterative s
\ /

simulated projections /

first im timat
ret Image estimate corrected projections

corrected images
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Algebraic Reconstruction Technique

An advantage of ART over other reconstruction methods (such as filtered

backprojection) is that it is relatively easy to incorporate prior knowledge into the
reconstruction process. y b
X =

ART can be considered as an iterative solver of a system of linear equations
where:
A is a sparse mxn matrix whose values represent the relative contribution of

each output pixel to different points in the sinogram (m being the number of
individual values in the sinogram, and = being the number of output pixels);

« xrepresents the pixels in the generated (output) image, arranged as a vector,
and:

« b is a vector representing the sinogram. Each projection (row) in the

sinogram is made up of a number of discrete values, arranged along the
transverse axis.

b is made up of all of these values, from each of the individual projections.
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Algebraic Reconstruction Technique

Given a real or complex matrix A and a real or complex vector b,
respectively, the method computes an approximation of the solution of
the linear systems of equations as in the following formula
b —(a.,x"
X! =xk+/1k l < 12 >a.T

1
synthesized projections P’ ||a ||

measured projections p \

wd | | i |
- L
'qﬁ J =Hx=> b Aijr - Aigj Ps = &j1j1 + 8igjr
_ NTH
--H: —= ps : 8j1jp | Qg2 Pg = 8j1j2 + 82

.l It \w .

PR
P1 P2 P3 . lterative
\ . Reconstruction

Pi= Pz =
aitj1 g1

Ps = &1j1 + g2
+ 8z +age 3= Sy i2]

Marco Marcon - Tomography POLITECNICO MILANO 1863




Dominant reconstruction approaches

FBP Hybrid IR Model-based IR
Filter ‘
S ! A
e e
o & s . c
g5 $E PO .8
£a5 | 5 5% %
D 2 2 5% @3
u_h 1
Filter e e
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Ex vivo human heart scanned at 4 mGy and 1 mGy

GE Philips Siemens Toshiba

FBP

FBP

>
O

£
i
_
(@]
—
(9

Hybrid

iDose®’ " SAFIRE AIDR3D

"
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Multi band tomography

Dual-energy CT Photon-counting CT

— —
S — —

L 4

e . . - . E

Final image
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The Hyperspectral image tensor

‘— photons Energy bins = —
Using the MultiX ME100 ESSSSSSSS :

a detailed description of
the analyzed foods is

, NN NN
O - 1 6 O keV h OtO n . N>
p SN

energy range.

The following analysis is BRI e, S
performed on the image tensor LM A S
where every pixel is described OV@J/
as a set of 128 ‘colors’ i.e. the 0
energy bins that represent the
spectrum of the acquired point.

NSNS,
TR
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Multi energy detectors vs. conventional detectors

CONVENTIONAL CONVENTIONAL MULTIX
SINGLE ENERGY DUAL ENERGY MULTI ENERGY

SCINTILLATOR SCINTILLATOR CdTe DETECTOR
1 data of energy 4 n 2 data of energy 4 256 data of energy
A \
/. S
T4 ™ .
-
/, o WS o
\.F..’ s ot -.'-m-p
ENERGY 160K OKV ENERGY 160KV 0KV ENERGY 160 KV

A gimple analogy with photography

Multi energy demonstrates a much better capability to segregate
materials with close atomic composition
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The classification phase

X-RAY BEAM

®f

X-RAY
MEASUREMENT

A

X-RAY BEAM

8
by

N

X-RAY
MEASUREMENT

=>

Marco Marcon - Tomography

0kv

O kv

ENERGY

UNSAFE

ENERGY

160 kv

N
™™

CONTAMINANT
IDENTIFIED
AND REJECTED
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Phase-Contrast Tomography

(b)
Working principle:
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Phase-Contrast Tomography

Phase-contrast X-ray imaging is a general term for that use
information concerning changes in the phase of an X-ray beam
that passes through an object in order to create its images.

Standard X-ray imaging techniques rely on a decrease of the X-
ray beam's intensity (attenuation) when traversing the sample, it
can can be measured directly with the assistance of an X-ray
detector.

In phase contrast X-ray imaging, the beam's phase shift caused
by the sample is not measured directly, but is transformed into
variations in intensity, which then can be recorded by the
detector.

Phase contrast imaging can be combined with tomographic
techniques to obtain the 3D distribution of the real part of the
refractive index of the sample.
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Wave propagation

For X-rays the complex refractive index of a medium is typically

written as: _ o0 + W with & << 1

elastic inelastic

A planar wave in vacuum can be written as:

W, (F, 1) = ¥ ol (kF—wi) _ W, ef (ke
where: . :
k=1(0,0,k = Tﬂ')

While, in a medium:

/] ) =W i(nkz—wt) _ N} —iwt (1-0)ikz ,—Pkz _ W, (z.1) - —idkz —Bkz
m(2,1) 0¢€ 0€ e e v(Z,1) - e e

[phase-shift] [attenuation]
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Phase propagation

(@) When a wave-front travels through a medium with complex refractive index n, it
experiences a decrease in wave-amplitude by AA as indicated by blue arrows,
which is associated with the imaginary part of the refractive index.

The perturbed wave receives a shift in the wave-phase by A® as indicated by
red arrows, which is associated with the decrement of refractive index.

(b) When a wave-front travels through a phase prism (g = 0), a local variation in
wave-shift implies a refraction of the wave by an angle owx, with respect to the
incident wave-front. Note that peaks of the excited waves are aligned on a line
(dashed line), which is titled by the angle ax with respect to the horizontal.

(a) (b)
k |

w1 -seiplh L4 FAA L.

a &
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Attenuation of X-rays

The ratio of beam intensities before and after the medium is:
I1,(d v, (d, 1)|?
) = @D 1@ OF o
I,(0) W, (0, 1)|?

Comparing with Lambert-Beer:

I, (d
1,(0)
Results in: u=2kp
The variations induced T(x,y) =e */otrad
by the medium are: AD(x. y) =k/5(x, N
_10%0,y) 9
(¥, y) = k  Ox T Ox /6(:{, Y1) dz.
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Why phase contrast?

0 is approximately 3 orders of magnitude larger than B, their typical
values being 107% - 1077 and 1072 — 10719, respectively. This huge
difference is the reason why phase-sensitive techniques can be
advantageous over attenuation-based imaging.

10°

108

107

Q:E 10®
L]

107

1070

10717
10 20 a0 40 50 60 70 80 ap 100
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Phase contrast effect

X x4 z10,(x, y)

Arrival points change:
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Intensity variation due to phase changes

0(x1, y1) |
I(x1,y1)=1(x,Yy) 3 (x. y)
1
1-|-Z1aax 4| aao;x
=1(x,y) Bozy 1 aczy
57 -I-Zl

~ 10,y (14 fvzcb(x,y)) |

With a first-order Taylor expansion:

[0,y = 1 y) (1= V70, )

— Ioe_zkfﬁ(x’y’Z)dZ (1 — Zk—1V2<I>(x, y))
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Phase Contrast results
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Intensity vs Phase contrast Tomography
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Intensity vs Phase contrast Tomography
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Intensity vs Phase contrast Tomography
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THE END
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