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Outline

• 2D Fourier Transform
• 2D Discrete Fourier Transform
• Hough Transform
• From Hough to Radon transform
• Lambert-Beer principle
• Computed Tomography 
• Filtered Back Projection
• ART and SART methods
• Multispectral acquisitions
• Phase-contrast Tomography 
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Fourier series reminder

Example

𝑓 𝑥 ൌ sin𝑥 ൅
1
3 sin3𝑥൅. . .
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Fourier series: just a change of basis
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Inverse FT: Just a change of basis
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The 2D Fourier Transform

The analysis and synthesis formulas for the 2D 
continuous Fourier transform are as follows:
Analysis

Synthesis
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Separability of 2D Fourier Transform

The 2D analysis formula can be written as a 1D analysis in 
the x direction  followed by a 1D analysis in the y direction:

The 2D synthesis formula can be written as a 1D synthesis 
in the x direction followed by a 1D synthesis in y direction:
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The Discrete Fourier Transform  (DFT)

The Discrete Fourier Transform (for sampled signals) can be 
written as:

With this notation the DFT Analysis and Synthesis pair becomes:
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Numerical examples

The DFT for N samples can be obtained as the multiplication of 
the N samples by the W matrix
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DFT examples

N=2

N=4

N=8
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DFT for N=8

The DFT for N samples seen as the projection on N 
complex exponential sequences
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Example

Consider a periodic signal whose period is [0 1 2 3]
If we want to get the DFT of the input signal we can write:
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Inverse DFT

The inverse of the W matrix will be equal to its conjugate 
transpose divided by N, for example for N=4

The iDFT for the previous example will then be:
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Sinusoidal waves

The 2D Fourier Transform is based on a decomposition into 
complex functions:

The real and imaginary terms are sinusoids on the x,y plane.

𝑒௝ଶగ ௨௫ା௩௬ ൌ cos2𝜋 𝑢𝑥 ൅ 𝑣𝑦 ൅ 𝑗sin2𝜋 𝑢𝑥 ൅ 𝑣𝑦
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Sinusoidal waves
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Sinusoidal waves
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Sinusoidal waves
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Fourier Transform Pair example
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The 2D Discrete Fourier Transform for periodic signals

The analysis and synthesis formulas for the 2D 
discrete Fourier transform are as follows:
Analysis

Synthesis
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Separability of 2D Discrete Fourier Transform

The 2D forward DFT (for a squared input matrix of size 
SxS) can be written in matrix notation:

Where r and c are row
and column indexes
starting from zero. 

2* 1 rcj
S

rcW e
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
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Separability of 2D Discrete Fourier Transform

And

The 2D inverse DFT can be written in matrix notation:

Where the matrix
elements are 21 rcj

A
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A
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Transform examples
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2D DFT Example
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low-pass (blurred) version of an image
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Hi-Pass Filter

a high-pass filtered version of Albert, and the amplitude spectrum of 
the filter. This impulse response is defined by (n)-h(n,m) where 
h(n,m) is the separable blurring kernel used in the previous figure
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Band Pass Filter

a band-pass filtered version of Albert, and the amplitude spectrum of 
the filter. 
This impulse response is defined by the difference of two low-pass 
filters.
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Directional filters
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Hough Transform

Goal: recognize lines in images
Approach:

– For every point in the starting image plot the sinusoid 
on the dual plane (parameter space):

ρ=x*cos(ϑ)+y*sin(ϑ)
where x and y are fixed (the considered point 
coordinates) while ρ and ϑ are variables.

– The Hough Transform of an image with K lines is the sum of
many sinusoids intersecting in K points.

– Maxima in the dual plane indicate the parameters of the k lines

),( 
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Hough: implementation

Consider a discretization of the dual plane for the parameters 
(ρ,ϑ): it becomes a matrix whose raw and column indices 
correspond to the quantized values of ρ and ϑ.
The limits of ρ are chosen accordingly to the image size.
Usually: -ρmax ≤ ρ ≤ ρmax, -π/2 ≤ ϑ ≤ π/2
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Hough: implementazion

Clear the matrix H(m,n);
Fro every point P(x,y) of the image

– 1. for ϑn that ranges from -π/2 to π/2 with step dϑ
• 1. Evaluate ρ(n)=x*cos(ϑn)+y*sin(ϑn)
• 2. find the index m corresponding to ρ(n)
• 3. Increase H(m,n)

– 2. end
end
4. Find local maxima in H(.,.) that will corresponds to 
parameters of the founded lines
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Hough Trasform

5 points
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Hough Trasform

line 
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Hough Trasform

line 
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Hough Trasform

line 
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Hough Trasform

Dotted line
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Hough Trasform

Same text with different orientations
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Hough Trasform

Noisy and noiseless
square
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Hough Trasform

Accumulation matrices of the previous images
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Examples
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Example
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Radon and Hough transforms

The Hough transform and the Radon transform are indeed very 
similar to each other and their relation can be loosely defined as 
the former being a discretized form of the latter.

The Radon transform is a mathematical integral transform, 
defined on for continuous functions.

The Hough transform, on the other hand, is inherently a discrete 
algorithm that detects lines (extendable to other shapes) in an 
image by polling and binning (or voting).
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The Beer-Lambert Law

The Beer-Lambert law connects the initial (known) and final 
(measured) intensities of an X-ray:
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Beer-Lambert law and Radon transform
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Hounsfield units

The energy of the X-ray is attenuated from the tissue that it 
crosses.
The denser the tissue region, the higher the attenuation.
We are interested in a parameter called absorption 
(=attenuation) coefficient    .
The result is expressed in relative Hounsfield units:
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CT scan [1972 Cormack, Hounsfield - Nobel Prize 1979]



Marco Marcon - Tomography

The sinogram

For every angle we obtain a projection, a collection of projections 
is called sonogram.



Marco Marcon - Tomography

‘Computational’ version

• Sinogram (measured data): already discrete (finite set of 
angles, finite set of detectors)

• Sample: discretize in voxels
• Various approaches to discretize (compute or approximate) the 

line integrals
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History of clinical CT scanners

Hounsfield’s first generation 
CT scanner showing the 
translation-rotation system.
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History of clinical CT scanners

The second generation CT 
scanner, showing the 
improved translation-
rotation system.
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History of clinical CT scanners

The third generation of CT 
scanner, the first fan-beam 
type scanner.
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History of clinical CT scanners

A fourth generation CT 
scanner, showing the full 
ring of detector elements.
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History of clinical CT scanners

The fifth generation CT 
scanner. The source and 
detector rings both sweep 
through angles of 210° and 
are arranged to be non-
coplanar, so as to allow for 
the overlap
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Mapping and reconstruction
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Image reconstruction

There are several techniques for performing image reconstruction, which can be
classified into:
• Analytical, 
• Algebraic,
• Statistical.
Analytical techniques model the object as a mathematical function, thus, reconstruct
the object by solving a continuous integral equation. 
• Analytical techniques are divided into:

• exact algorithms 
• non-exact algorithms

• depending on whether or not the solution of the integral equation is exact. 
• Algebraic Reconstruction Techniques (ARTs) make use of iterative reconstruction 

approaches in which several iterations are performed until certain criteria are 
met.

• Statistical reconstruction algorithms are also iterative methods, but in this case 
the unknowns are assigned by means of likelihood principles.
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Fourier Slice Theorem

The object, which in this case for  simplicity is represented as a 
circle in the 2D view, is described by the function f(x,y). 
Coordinate system used for the tomographic reconstruction in 
parallel-beam geometry:
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Fourier Slice Theorem

The object, which in this case for  simplicity is represented as a 
circle in the 2D view, is described by the function f(x,y). 
Coordinate system used for the tomographic reconstruction in 
parallel-beam geometry:



   o n, c s , siF u v F    
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Fourier Slice Theorem

If                              is the 1D Fourier transform in the  direction ( represents 
frequencies along that direction), then it also corresponds to the values of the 
2D Fourier transform along the straight line:                         
and, in particular, 
• Fourier slice theorem provides a straightforward procedure for tomographic 

reconstruction, but,in the practical implementation, after applying the 1D 
Fourier transform to each projection, the Fourier space is filled on a polar 
coordinate grid. 

• The fast Fourier transform (FFT), however,requires data on a Cartesian grid. 
• For performing the 2D inverse Radon transform by means of a FFT algorithm, 

a regridding process is required in which projection data are rearranged from 
a polar to a Cartesian grid through interpolation.

• Interpolation in the frequency domain is not as straightforward as in the 
spatial domain, and is difficult to implement. 

𝑃ఏ 𝜔 ൌ ℱ 𝑝ఏ 𝑡

0sin cosvu   
cos sinu v   
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Filtered Backprojection

The FBP algorithm, is the most widely used reconstruction method, 
directly derived from the Fourier Slice Theorem.
Each projection describes the distribution of the attenuation coefficient 
for the given X-ray path.

According to the simple backprojection principle, every profile is 
backprojected along the viewing direction (i.e. the  angle) from which it 
was acquired.
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Backprojection blurring

Due to the fact that each projection is a non-negative function, 
positive values are also assigned to voxels that do not contain the 
object. This leads to a blurred image that is not of sufficient 
quality.

The figure represents the result of the simple backprojection of a 
point object. 
The superimposed profiles produce a central spike with a broad 
skirt that falls off as 1/r.
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Implementation of the Filtered Back Propagation

FBP involves convolving each object projection with
a filtering function (directly obtained from the polar coordinates), before 
calculating the inverse Fourier transform to recover the object.
The 2D inverse Fourier Transform is: 

Since 
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Implementation of the Filtered Back Propagation

The formula is equivalent to:

So, we can limit the values of              to the acquired values 
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Implementation of the Filtered Back Propagation

The formula is equivalent to:

That, in a discrete formulation (finite number I of views i) becomes:
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Continuous and discrete reconstruction with FBP
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Algebraic reconstruction technique
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Algebraic Reconstruction Technique

An advantage of ART over other reconstruction methods (such as filtered 
backprojection) is that it is relatively easy to incorporate prior knowledge into the 
reconstruction process.

ART can be considered as an iterative solver of a system of linear equations
where:
• A is a sparse mn matrix whose values represent the relative contribution of 

each output pixel to different points in the sinogram (m being the number of 
individual values in the sinogram, and n being the number of output pixels);

• x represents the pixels in the generated (output) image, arranged as a vector, 
and:

• b is a vector representing the sinogram. Each projection (row) in the 
sinogram is made up of a number of discrete values, arranged along the 
transverse axis. 

b is made up of all of these values, from each of the individual projections.

Ax b
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Algebraic Reconstruction Technique

Given a real or complex matrix A and a real or complex vector b, 
respectively, the method computes an approximation of the solution of 
the linear systems of equations as in the following formula
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Dominant reconstruction approaches



Marco Marcon - Tomography

Ex vivo human heart scanned at 4 mGy and 1 mGy 
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Multi band tomography



Marco Marcon - Tomography

The Hyperspectral image tensor

Using the MultiX ME100 
a detailed description of 
the analyzed foods is 
obtained in a wide 
(0-160keV) photon 
energy range.

The following analysis is 
performed on the image tensor 
where every pixel is described 
as a set of 128 ‘colors’ i.e. the 
energy bins that represent the 
spectrum of the acquired point.  
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Multi energy detectors vs. conventional detectors

Multi energy demonstrates a much better capability to segregate 
materials with close atomic composition
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The classification phase



Marco Marcon - Tomography

Phase-Contrast Tomography

Working principle:
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Phase-Contrast Tomography

Phase-contrast X-ray imaging is a general term for that use 
information concerning changes in the phase of an X-ray beam 
that passes through an object in order to create its images.
Standard X-ray imaging techniques rely on a decrease of the X-
ray beam's intensity (attenuation) when traversing the sample, it 
can can be measured directly with the assistance of an X-ray 
detector. 
In phase contrast X-ray imaging, the beam's phase shift caused 
by the sample is not measured directly, but is transformed into 
variations in intensity, which then can be recorded by the 
detector.
Phase contrast imaging can be combined with tomographic 
techniques to obtain the 3D distribution of the real part of the 
refractive index of the sample. 
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Wave propagation 

For X-rays the complex refractive index of a medium is typically
written as:

A planar wave in vacuum can be written as: 

where:

While, in a medium:

{ {   with 11
inela ass tiel i ct c

n i     
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Phase propagation

(a) When a wave-front travels through a medium with complex refractive index n, it 
experiences a decrease in wave-amplitude by  as indicated by blue arrows, 
which is associated with the imaginary part of the refractive index.
The perturbed wave receives a shift in the wave-phase by  as indicated by 
red arrows, which is associated with the decrement of refractive index. 

(b) When a wave-front travels through a phase prism (β = 0), a local variation in 
wave-shift implies a refraction of the wave by an angle x, with respect to the 
incident wave-front. Note that peaks of the excited waves are aligned on a line 
(dashed line), which is titled by the angle x with respect to the horizontal.
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Attenuation of X-rays

The ratio of beam intensities before and after the medium is:

Comparing with Lambert-Beer:

Results in:
The variations induced
by the medium are:

2k 
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Why phase contrast?

δ is approximately 3 orders of magnitude larger than β, their typical 
values being 10−6 − 10−7 and 10−9 − 10−10, respectively. This huge 
difference is the reason why phase-sensitive techniques can be 
advantageous over attenuation-based imaging.
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Phase contrast effect

Arrival points change: 
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Intensity variation due to phase changes

With a first-order Taylor expansion:
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Phase Contrast results
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Intensity vs Phase contrast Tomography
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Intensity vs Phase contrast Tomography
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Intensity vs Phase contrast Tomography
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THE END


